55,608 research outputs found

    Higher-Derivative Gravity with Non-minimally Coupled Maxwell Field

    Full text link
    We construct higher-derivative gravities with a non-minimally coupled Maxwell field. The Lagrangian consists of polynomial invariants built from the Riemann tensor and the Maxwell field strength in such a way that the equations of motion are second order for both the metric and the Maxwell potential. We also generalize the construction to involve a generic non-minimally coupled pp-form field strength. We then focus on one low-lying example in four dimensions and construct the exact magnetically-charged black holes. We also construct exact electrically-charged z=2z=2 Lifshitz black holes. We obtain approximate dyonic black holes for the small coupling constant or small charges. We find that the thermodynamics based on the Wald formalism disagrees with that derived from the Euclidean action procedure, suggesting this may be a general situation in higher-derivative gravities with non-minimally coupled form fields. As an application in the AdS/CFT correspondence, we study the entropy/viscosity ratio for the AdS or Lifshitz planar black holes, and find that the exact ratio can be obtained without having to know the details of the solutions, even for this higher-derivative theory.Comment: Latex, 23 page

    Quantum Error Correction of Time-Correlated Errors

    Get PDF
    The complexity of the error correction circuitry forces us to design quantum error correction codes capable of correcting a single error per error correction cycle. Yet, time-correlated error are common for physical implementations of quantum systems; an error corrected during the previous cycle may reoccur later due to physical processes specific for each physical implementation of the qubits. In this paper we study quantum error correction for a restricted class of time-correlated errors in a spin-boson model. The algorithm we propose allows the correction of two errors per error correction cycle, provided that one of them is time-correlated. The algorithm can be applied to any stabilizer code when the two logical qubits ∣0L>\mid 0_L> and ∣1L>\mid 1_L> are entangled states of 2n2^{n} basis states in H2n\mathcal{H}_{2^n}.Comment: 14 pages, 3 figure

    Enhanced current noise correlations in a Coulomb-Majorana device

    Get PDF
    Majorana bound states (MBSs) nested in a topological nanowire are predicted to manifest nonlocal correlations in the presence of a finite energy splitting between the MBSs. However, the signal of the nonlocal correlations has not yet been detected in experiments. A possible reason is that the energy splitting is too weak and seriously affected by many system parameters. Here we investigate the charging energy induced nonlocal correlations in a hybrid device of MBSs and quantum dots. The nanowire that hosts the MBSs is assumed in proximity to a mesoscopic superconducting island with a finite charging energy. Each end of the nanowire is coupled to one lead via a quantum dot with resonant levels. With a floating superconducting island, the devices shows a negative differential conductance and giant super-Poissonian shot noise, due to the interplay between the nonlocality of the MBSs and dynamical Coulomb blockade effect. When the island is strongly coupled to a bulk superconductor, the current cross correlations at small lead chemical potentials are negative by tuning the dot energy levels. In contrast, the cross correlation is always positive in a non-Majorana setup. This difference may provide a signature for the existence of the MBSs.Comment: 11 pages, 10 figure
    • …
    corecore